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The scattering of sound at a sudden area expansion in a duct with subsonic mean flow

has been modelled with a multimodal method. Technological applications are for

instance internal combustion engine exhaust silencers and silencers in industrial duct

systems. Both 2D rectangular and 2D cylindrical geometries are considered.

application of an acoustic Kutta condition at the edge of the area discontinuity, is

investigated. The scattering coefficients for the plane waves are found to change

smoothly as the flow profile is changed gradually from one, where the acoustic Kutta

condition is applied to one where it is not applied. Furthermore, for high Strouhal

numbers no difference is observed in the results for the scattering coefficients obtained

for different flow profiles. Also, at low Strouhal numbers the magnitudes of the

scattering coefficients are the same for different profiles.

The influence of the ratio of the heights (in 2D rectangular geometry), respectively,

radii (in 2D cylindrical geometry), of the ducts upstream and downstream of the area

expansion on the scattering coefficients is examined. Around a certain Strouhal number, a

specific feature in the scattering coefficients is observed when the ratio of the duct heights

or radii is less than 0.5. This is found to be connected to a strong interaction between the

first evanescent acoustic mode and the hydrodynamic instability mode. For non-uniform

flow even an apparent jump between the first evanescent acoustic mode and the

hydrodynamic unstable mode and a corresponding jump in scattering coefficients is

observed, when employing causality analysis according to the Briggs–Bers or Cright-

on–Leppington procedure. This implies that in fact an absolute instability occurs.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The scattering of sound at an area expansion in a duct carrying mean flow is of interest in technical applications such as
internal combustion engine exhaust silencers and silencers in industrial duct systems. The interaction between sound and
flow, which occurs in the shear layer formed downstream of the expansion, can namely result in sound absorption.

In an earlier paper by the authors [1] a multimodal method [2–6] to calculate the scattering of sound at an area
expansion in a 2D rectangular or 2D cylindrical duct with either uniform or non-uniform flow was presented. For uniform
flow model results were compared with those obtained by the simplified multimodal method of Aurégan [7,8] as well as
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those obtained by the model of Boij and Nilsson [9,10]. Generally, good agreement was found between the different models,
especially for the downstream reflection coefficient. The scaling rule for the Helmholtz number, proposed by Boij and
Nilsson [9], in order to compare scattering results for an area expansion in 2D rectangular and 2D cylindrical geometry at
the same area expansion ratio, was found to be invalid at a critical Strouhal number. Here, a specific behaviour was found,
which was reported to depend on the ratio of the duct heights, or ratio of duct radii, upstream and downstream of the
expansion. In the present paper this phenomenon, which is closely connected to the behaviour of (the wavenumbers of) the
modes, will be presented and discussed in more detail.

In Ref. [1] scattering results obtained by the multimodal method were also compared to experimental data presented by
Ronneberger [11]. Fairly good agreement was found, and in some cases a better prediction of the experimental results by
the model was observed when considering a non-uniform flow profile, rather than a uniform flow profile. In the present
paper the influence of the flow profile, and more in particular the effect of the (in the multimodal method) related
application of an acoustic Kutta condition is discussed. The Kutta condition allows to take into account the effect of
viscosity in the otherwise frictionless model by assuming tangential flow separation. This appears to be equivalent to a
removal of the singular edge behaviour which would prevail in a potential edge flow [12,13].

Besides the configurations with uniform flow and non-uniform flow, extensively dealt with in Ref. [1], an ‘intermediate’
third flow configuration, that of a non-uniform flow with a discontinuity in velocity at the flow to no flow interface, will be
introduced in this paper. The eigenvalue problem for the modes and accompanying wavenumbers as well as the mode
matching for this additional configuration will first be discussed. Next, the effect of flow configuration on the results for the
scattering of plane waves at an area expansion is presented. Subsequently, the influence of the ratio of duct heights, or duct
radii, upstream and downstream of the expansion, and the associated behaviour of the modes will be discussed in detail.
2. Multimodal method

Consider a sudden area expansion in a 2D rectangular duct, Fig. 1. The configuration is split into a duct at xo0 with
height h1 and a duct at x40 with height h2. The two are indicated in the figure with boxed numbers 1 and 2, respectively. In
duct 1 parallel non-uniform mean flow with velocity UðyÞ is present. The mean flow is assumed to continue as a free jet
with unaltered profile in duct 2. This jet is in equilibrium surrounded by stagnant fluid. The flow has non-zero velocity at
the upper wall of duct 1, resulting in a slip velocity between the flow/no flow interface in duct 2. Regarding the multimodal
method this case is in fact a combination between the configuration with uniform flow and that with non-uniform flow
(without slip velocity), extensively discussed in our earlier paper [1]. As shown there, starting from the linearized Euler
equations for conservation of momentum and mass gives, after discretization in the y-direction and using finite difference
for differential operators, an eigenvalue problem for the modes in duct 1:
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Here, the following non-dimensionalization is employed:
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Fig. 1. Area expansion in a 2D rectangular duct. The configuration is split into duct 1 with height h1 and duct 2 with height h2. Non-uniform mean flow

with a slip velocity at the upper wall is present in duct 1, the profile is unaltered in duct 2, giving a velocity jump in the shear layer.
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with p0,u0, and v0, the linear pressure disturbance and velocity disturbance in x and y direction, respectively. M0 is the
average Mach number, f ðyÞ is a flow profile function, and c0 is the speed of sound. o is the angular frequency of sound.
Harmonic waves are assumed, in complex from:

p� ¼ Pðy�Þexpð�ik�x�Þexpðio�t�Þ;

v� ¼ Vðy�Þexpð�ik�x�Þexpðio�t�Þ;

q� ¼ Q ðy�Þexpð�ik�x�Þexpðio�t�Þ; (3)

with k� the dimensionless wavenumber k� ¼ kh1, i2
¼ �1, and

q� ¼ i
qp�
qx�

: (4)

such that also Q ¼ k�P. In Eq. (1) Q , V and P are column vectors giving the values of Q ðy�Þ, Vðy�Þ, and Pðy�Þ at the N1 discrete
points in duct 1. I is the (N1 � N1) identity matrix, f, f2 and fa are (N1 � N1) matrices with on their diagonal the values of
f ðy�Þ, f 2ðy�Þ and df ðy�Þ=dy�, respectively, at the discrete points in duct 1. D1 and D2 are (N1 � N1) matrices giving the finite
difference first, respectively, second-order differential operator with respect to y�. These matrices also account for the
boundary condition qp�=qy� ¼ 0 at the duct walls. Solving the eigenvalue problem (1) gives all eigenvectors, i.e. modes, Q e

and Pe and Ve, as well as the corresponding eigenvalues, i.e. dimensionless wavenumbers, ke�, in duct 1. Here, in total 3N1

modes are found, which can be divided into N1 acoustic modes propagating (or decaying) in the þx�direction, N1 acoustic
modes propagating (or decaying) in the �x�direction, and N1 hydrodynamic modes propagating in the direction of the
mean flow (þx�direction). The total solution for q�, and the non-dimensional pressure and velocity disturbance p�,
respectively, v� at the discrete points is a linear combination of these modes:

q�ðx�; t�Þ ¼
X3N1

n¼1

CnQ e;nexpð�ike;n�x�Þexpðio�t�Þ;

v�ðx�; t�Þ ¼
X3N1

n¼1

CnVe;nexpð�ike;n�x�Þexpðio�t�Þ;

p�ðx�; t�Þ ¼
X3N1

n¼1

CnPe;nexpð�ike;n�x�Þexpðio�t�Þ; (5)

with n an index for the modes and Cn the coefficient of mode n.
In duct 2 a combination between the eigenvalue problem for non-uniform flow and uniform flow holds. Basically, one can

start from the eigenvalue problem as in Eq. (1) where a number of rows and columns in the matrices, corresponding with
equations for/with V at the points without mean flow have to be omitted. Subsequently, as with uniform flow, an intermediate
point at the interface between mean flow and no mean flow is introduced, where the acoustic velocity in y direction, with
amplitudes Vflow, respectively, Vnoflow, seen from both sides is considered, see Ref. [1]. At this intermediate point continuity of
the acoustic pressure and fluid displacement is demanded. This leads to the following eigenvalue problem:
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where Mint is the (jump in) Mach number at the interface between mean flow and no mean flow. The second-order derivative
of the acoustic pressure amplitude, accurate to order ðDh�Þ

2, at points N1 and N1 þ 1 has changed here into

d2P
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Unlike with the configuration of uniform flow, the first derivative also occurs in the eigenvalue problem for the first N1 points.
The first-order derivative of the acoustic pressure amplitude, accurate to order ðDh�Þ

2, at point N1 becomes

dP

dy�

����
N1

¼
PðN1Þ � PðN1 � 1Þ

2Dh�
�

iðo� �Mintk�ÞVflow

2
: (8)

These changes are taken into account in the differential matrices D1 and D2 in Eq. (6). In total N2 acoustic modes propagating/
decaying in the þx�direction and N2 acoustic modes propagating/decaying in the �x�direction are found. Also, N1 stable
hydrodynamic and two unstable hydrodynamic modes are found. At the interface between duct 1 and duct 2 continuity of the
parameters q�, v�, and p� holds. Furthermore, as in the uniform flow case, an acoustic Kutta condition is applied at the edge of
the area expansion, by imposing the condition that the fluid displacement as well as the derivative of the displacement with
respect to x equals zero at x ¼ 0; y ¼ h1. This gives the following mode matching equation:
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Here, the columns of matrices Q , V, P, and Vnf contain the eigenmodes Q e, Ve, Pe, and that of Vnoflow, respectively. Vectors C
contain the coefficients of the modes. Additional subscripts 1 and 2 refer to the duct region. A discrimination in the direction
of propagation of the modes is made by superscripts þ and �. Matrices k2 contain the wavenumbers in duct 2 on their
diagonal. The scattering matrix can be obtained by S ¼ S�1

1 S2. The reflection and transmission coefficients of the plane waves
are given by

Rþ ¼ Sð1;1Þ; T� ¼ Sð1;2N1 þ 1Þ;

Tþ ¼ SðN1 þ 1;1Þ; R� ¼ SðN1 þ 1;2N1 þ 1Þ: (10)

2.1. Discerning the modes

When the modes and their wavenumbers are calculated, the direction of propagation is in fact not known. This especially
becomes a relevant issue when an unstable hydrodynamic mode may be present, since it can be confused with an
evanescent acoustic mode decaying in the �x direction, as both (can) have a wavenumber with positive real and imaginary
part. Formally, in order to determine the direction of propagation of modes, two causality criteria are available, viz. the
Briggs–Bers formalism [14,15] and the Crighton–Leppington formalism [16,17]. In both cases the wavenumbers of the modes
are traced while letting the angular frequency o go from a complex value to its eventual real value. In the Briggs–Bers
formalism ReðoÞ is kept constant while ImðoÞ runs from �1 to 0. In the Crighton–Leppington formalism joj is fixed and
argðoÞ runs from � 1

2p to 0. For the current expðiðot � kxÞÞ convention, if a wavenumber originates in the lower complex
plane, the mode is right running, if it originates in the upper complex plane the mode propagates to the left. This implies
that if the wavenumber crosses the real axis the mode is unstable. In this way evanescent acoustic modes and unstable
(exponentially growing) hydrodynamic modes can be distinguished. Note here that for real frequencies the wavenumbers
are found in complex conjugate pairs. Furthermore, neutral hydrodynamic modes and propagating acoustic modes, which
both have purely real wavenumber, can be discerned by the fact that the propagating acoustic modes have k=k0r1, whereas
for the neutral hydrodynamic modes k=k0Z1=Mmax, with Mmax the maximum Mach number of the mean flow.

2.2. Steady and acoustic Kutta conditions

The mode matching at an area expansion in a duct has been discussed for three mean flow configurations: for non-
uniform flow, where mean flow velocity is zero at the edge of the area discontinuity, and for uniform mean flow in Ref. [1],
and in the above for non-uniform flow with a slip velocity at the edge. In the present method viscosity of the fluid is
neglected, however, the physical effect of viscosity near the edge of the area expansion can be included by applying steady
and/or unsteady (acoustic) Kutta conditions. In the preceding, the steady Kutta condition was imposed for the mean flow in
all three configurations, by assuming that the mean flow profile in the duct upstream of the area expansion continues
unaltered downstream of the expansion. This represents free jet formation by flow separation. For the acoustic field the
unsteady Kutta condition can, however, only be imposed explicitly for non-uniform mean flow with a slip velocity at the
edge and for uniform mean flow.

This means that for the non-uniform flow configuration the effect of viscosity is included in the way it affects the
boundary layer profile of the mean flow. Here, the mean flow also satisfies the no slip condition at the wall due to viscosity.
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Clearly other effects of viscosity, such as turbulent mixing downstream of the expansion, are neglected. For the acoustic
field, however, the effect of viscosity cannot be explicitly accounted for. For the uniform mean flow configuration the effect
of viscosity is included for the mean flow and the acoustic field only near the edge, where both Kutta conditions are
applied. For the configuration of non-uniform mean flow with slip velocity at the wall the effect of viscosity is taken into
account because it determines the mean flow profile. Next to this the slip velocity enables us to include the effect of
viscosity for the acoustic field near the edge by applying an acoustic Kutta condition.

When modelling the acoustic behaviour of, in this case, an area expansion in a duct, or any geometry containing an edge,
the validity of an acoustic Kutta condition in fact depends on the exact physical configuration, which is modelled. The Kutta
condition namely cancels the unphysical singularity in the (acoustic) flow field at the edge. However, this singular
behaviour is an outcome of the fact that in the model the edge is sharp. In reality the edge will not be infinitely sharp, but is
rounded with a certain radius of curvature re. The question whether or not to apply the acoustic Kutta condition in the
model depends on the ratio of certain variables in the physical situation. In the absence of mean flow, the acoustic Kutta
condition is related to vortex shedding which occurs if the acoustic boundary layer thickness, given by

dac ¼

ffiffiffiffiffiffi
2n
o

r
; (11)

with n the kinematic viscosity, and the amplitude of the acoustic fluid displacement, ju0j=o, are both larger than the edge’s
radius of curvature re, see e.g. Disselhorst [18]. In fact the detailed prediction of flow separation is extremely complex. It
involves the competition between adverse pressure gradient along the wall and the diffusion of momentum from the main
flow towards the fluid in the boundary layer [19]. In the case of a laminar flow separation such as when there is no main
flow, the prediction of flow separation is already very complex. When the main flow is turbulent there is no simple
analytical model available to predict flow separation from a smoothly curved wall. Nevertheless, also when there is a mean
flow, it can be expected that there is no acoustically induced flow separation if the acoustic boundary layer thickness and
the particle displacement are both small compared to the radius of curvature re of the edge. This, however, depends on the
coupling between the acoustic flow and the steady flow, which is determined by the ratio of acoustic boundary layer
thickness dac and viscous sublayer dþ of the upstream main flow profile:

dþ ¼
n

ufric
: (12)

Here, ufric is the friction velocity given by

ufric ¼

ffiffiffiffiffiffitw

r0

r
; (13)

with tw the shear stress at the wall, and r0 the mass density. The interaction between the acoustic field and the main flow
in a pipe has been studied by Ronneberger [20], Peters [21] and Howe [22].

When dac=d
þo10 it appears that the acoustical visco-thermal damping is accurately described by assuming that the

acoustically induced viscous losses are independent of the main flow. One could therefore assume in such a case that, if the
edge radius re is larger than dac and the acoustical particle displacement, the acoustic Kutta condition should not be
applied. This corresponds to the present model assuming zero main flow velocity at the edge of the duct discontinuity,
Uð0Þ ¼ 0.
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Fig. 2. Flow profile f ðyÞ in duct 2 as given by Eq. (14) with flow profile parameter m ¼ 10 and with different values of slip coefficient fint. Dotted line:

fint ¼ 0, dashed line: fint ¼ 0:5, solid line: fint ¼ 1. For fint ¼ 0 the flow is partly non-uniform without velocity jump, for fint ¼ 1 the flow becomes partly

uniform.
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When dac=d
þ410 there appears to be a strong coupling between the turbulent main flow and the acoustic field. This

coupling is described by Ronneberger [20] by an elegant model in which the shear waves in the acoustical viscous
boundary layer reflect at the edge of the turbulent core flow (at yC12dþ) which acts as a hard wall, due to the large
turbulent eddy viscosity. In the limit of dac=d

þ
b10 the model of Ronneberger [20] simplifies into a quasi-steady coupling

between the acoustic field and the main flow, because the shear-wave propagation time in the viscous sublayer can be
neglected compared to the acoustical oscillation period. As we apply a steady Kutta condition on the main flow and there is
a strong coupling with the acoustic flow, we expect that in such a case an acoustic Kutta condition should be applied in
order to describe the modulation of the vorticity shedding by the acoustic field. If we expect the non-uniform main flow
profile to have a significant impact and we do not want to restrict ourselves to a frictionless theory for the acoustic field we
have to employ the configuration with a slip flow at the duct wall and consequently a velocity discontinuity at the edge of
the free jet, downstream of the separation point. The magnitude of this assumed slip flow velocity is the actual main flow
velocity at the edge of the viscous sublayer, Uð12dþÞ.
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Fig. 3. Magnitude (a) and phase (b) of the downstream plane wave pressure reflection coefficient Rþ at an area expansion versus Strouhal number oh1=U0

with oh1=c0 ¼ 0:11, h1=h2 ¼ 0:35, N1 ¼ 70 and N2 ¼ 200. Mean flow profile is given by Eq. (14), where m ¼ 10 and fint ¼ 0 (�), fint ¼ 0:1 (�), fint ¼ 0:5 (r),

fint ¼ 0:9 ðþÞ and fint ¼ 1 (�), respectively. For fint ¼ 0 no Kutta condition is applied in the mode matching procedure, for other values of fint a Kutta

condition is applied. Quasi-stationary solution without mean flow is Rþ ¼ �0:4815.
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In the following, the influence of the mean flow profile configuration—non-uniform, non-uniform with slip, or
uniform—and the associated possible application of an acoustic Kutta condition, on the scattering at an area expansion will
be investigated. This will provide some insight in the effect of applying an acoustic Kutta condition in the first place,
without discussing the issue of which configuration is physically most relevant.

3. Influence of flow profile

Consider a non-uniform velocity profile with slip velocity at the upper wall of duct 1, as was shown in Fig. 1. The mean
flow continues unaltered into duct 2, resulting in a partly non-uniform flow with velocity jump at the mean flow to no
mean flow interface. Here, we take the following profile function:

f ðyÞ ¼

mþ 1

m
ð1� fintÞ 1�

y

h1

� �m� �
þ fint; 0ryrh1;

0; h1oyrh2;

8><
>: (14)

where m is a profile parameter setting the steepness of the profile. The parameter fint sets the slip velocity or velocity jump,
and will be denoted as the slip coefficient. If fint ¼ 0 the slip velocity is zero, if fint ¼ 1 the mean flow profile is uniform, and
0 1 2 3 4 5 6 7
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

ω h1/U0

ω h1/U0

|T
+ |

0 1 2 3 4 5 6 7
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

ar
g 

(T
+ )

 (r
ad

)

Fig. 4. Magnitude (a) and phase (b) of the downstream plane wave pressure transmission coefficient Tþ for configurations as in Fig. 3. Quasi-stationary

solution without mean flow is Tþ ¼ 0:5185.
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the shear layer in duct 2 becomes infinitely thin. For fint ¼ 0 the profile resembles that of a free jet flow, see Ref. [1]. The
average of f ðyÞ in duct 1 equals unity, such that M0 is the mean Mach number according to the definition MðyÞ ¼ M0f ðyÞ.
Fig. 2 shows the flow profile, Eq. (14), in duct 2 for m ¼ 10 and fint ¼ 0, 0:5, and 1. The ratio of duct heights is taken
h1=h2 ¼ 0:35. Calculations for the scattering matrix of an area expansion with h1=h2 ¼ 0:35 and the above flow profile
function with m ¼ 10 are performed for different values of the slip coefficient fint, namely fint ¼ 0, 0:1, 0:5, 0:9, and 1. The
Helmholtz number on duct height h1 is fixed at oh1=c0 ¼ 0:11, while the mean Mach number M0 is varied. The number of
points is N1 ¼ 70 in duct 1 and N2 ¼ 200 in duct 2. For fint ¼ 0, the mean flow is (piece-wise) non-uniform, and the
multimodal analysis is performed accordingly as described in Ref. [1] without application of an acoustic Kutta condition.
For fint ¼ 1 the mean flow is (piece-wise) uniform, here an acoustic Kutta condition is thus applied in the corresponding
multimodal method. For intermediate values, 0ofinto1, the mean flow in duct 2 is partly non-uniform with a slip velocity
at the flow/no flow interface. The multimodal method is performed accordingly for these cases, with thus again explicit
application of the acoustic Kutta condition. Results for the plane wave pressure reflection and transmission coefficients as a
function of Strouhal number oh1=U0, with U0 ¼ M0c0, are shown in Figs. 3–6.

The effect of going from a uniform flow profile to a non-uniform profile is here to increase the magnitude of the
reflection and transmission coefficients except for R�, of which the magnitude is decreased. Especially the magnitudes of
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the reflection and transmission coefficients change smoothly as the flow profile is gradually changed. Results for fint ¼ 0:1,
giving a non-uniform flow with a small slip velocity in the shear layer, are nearly the same as those for fint ¼ 0, where the
slip velocity vanishes. This indicates that application of the Kutta condition in the first case does not have a significant
effect on the results compared to the latter case where the Kutta condition is not imposed. Also for fint ¼ 0:9 results are
almost the same as for fint ¼ 1. For fint ¼ 0:9 neutral hydrodynamic modes are obtained, whereas in the fint ¼ 1 case, for
which mean flow is uniform, they are absent. Therefore, it can be concluded that any effect of the neutral hydrodynamic
modes vanishes smoothly as the flow profile is gradually changed from non-uniform to uniform.

Furthermore, the imaginary part of the wavenumber of the unstable hydrodynamic mode in duct 2 (i.e. the growth rate
of the hydrodynamic instability) is shown in Fig. 7. For non-uniform flow without velocity jump in the shear layer, fint ¼ 0,
the hydrodynamic instability vanishes above a certain Strouhal number. This behaviour is also typically found for free shear
layers with finite thickness, see e.g. Michalke [23]. For other values of fint hydrodynamic instability always occurs due to the
velocity jump in the shear layer. Consequently, for Strouhal number larger than about 3 the growth rate of the
hydrodynamic instability found for fint ¼ 0:1 begins to differ significantly from that found for fint ¼ 0. Nevertheless,
the corresponding results for the reflection and transmission coefficients, Figs. 3–6, are also practically the same for these
higher Strouhal numbers. The effect of the hydrodynamic instability, and in particular the non-vanishing of it, is thus
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negligible for high Strouhal numbers. This conclusion was also drawn by Boij and Nilsson [10] and Howe [24]. Moreover, for
low and high Strouhal number especially the magnitudes of the reflection and transmission coefficients converge to the
same value for all values of fint, indicating insignificance of the mean flow profile in these limits.

4. Influence of geometrical ratios

A striking feature is the hump in reflection and transmission found around Strouhal number equal to 1, cf. Figs. 3–6. Here,
for the values of fint equal to 0.5 or less, the phase plots even suggest a sudden jump. This feature may be connected to the
behaviour of the hydrodynamic instability, since in the plot of hydrodynamic instability growth rate, Fig. 7, also a hump is
seen for all values of fint around the same Strouhal number. It turns out that this feature only occurs in case of ‘asymmetry’ in
the flow profile, i.e. when in duct 2 of the expansion geometry the mean flow to no mean flow transition is not halfway the
duct. This will be illustrated below for both uniform flow and non-uniform flow in 2D rectangular geometry. Note that the
hump was also observed by Boij and Nilsson [9,10] in their model calculations for an infinitely thin shear layer in 2D
rectangular geometry for the same Helmholtz number oh1=c0 ¼ 0:11 and ratio of heights h1=h2 ¼ 0:35. They argued that
this feature may be connected to a strong interaction between the hydrodynamic mode and (an) acoustic mode(s).

4.1. Uniform flow

Fig. 8 shows the imaginary part of the wavenumber of the unstable hydrodynamic mode as a function of Strouhal
number oh1=U0 for different ratios of h1 and h2, obtained by modal analysis calculations in case of uniform mean flow. As
above, also here o� ¼ oh1=c0 ¼ 0:11. The number of points in duct 1 is fixed at N1 ¼ 70, the total number of points N2 is
thus determined by the ratio h1=h2. Indeed, the dependence of the (imaginary part of the) hydrodynamic wavenumber on
the Strouhal number strongly varies with h1=h2 ratio. For Strouhal numbers larger than about 2 all results for h1=h2r0:5
coincide. The results for h1=h2 ¼ 0:7 only coincide with those for other h1=h2 ratios above a Strouhal number of
approximately 5.5.

The hydrodynamic instability is also calculated for the case of incompressible flow. From Rayleigh’s equation, see e.g.
Rayleigh [25] and Drazin and Reid [26], the incompressible solution is found:

Phuðy�Þ ¼
Acoshðkhu�y�Þ; 0ry�r1;

Bcoshðkhu�ðy� � h2�ÞÞ; 1ry�rh2�;

(
(15)

with h2� ¼ h2=h1, and A and B coefficients determined by the wavenumber khu�. The wavenumber is found by demanding
continuity of pressure and displacement over the shear layer at y ¼ h1, giving

tanhðkhu�Þ

ðo� �M0khu�Þ
2
¼

tanhðkhu�ð1� h2�ÞÞ

w2
�

: (16)

This equation has to be solved numerically. The results obtained by modal analysis for ratios h1=h2 ¼ 0:35 and 0:5, cf. Fig. 8,
are compared to the incompressible solution, Eq. (16), in Fig. 9. The incompressible solutions for the hydrodynamic
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wavenumber are close to the results of the compressible modal analysis. This suggests that the observed behaviour of the
hydrodynamic instability really is an effect related to the area expansion ratio h1=h2, regardless the presence of acoustic
modes.

The magnitude and phase of the downstream plane wave pressure reflection coefficient Rþ at the area expansion with
uniform flow are shown in Fig. 10 for the different h1=h2 ratios. The observed hump (i.e. local maximum) in the magnitude
and phase of the reflection coefficient for h1=h2 ¼ 0:175 and 0:35 seems to coincide with the inflexion point in the plot of
hydrodynamic instability growth rate versus Strouhal number, cf. Fig. 8. For the other h1=h2 ratios the dependence of
hydrodynamic instability growth rate as well as reflection coefficient on Strouhal number is more smooth.

A more elaborate picture of the influence of the ratio of duct heights h1=h2 on the eigenmodes is given in Fig. 11. Here,
the wavenumbers of the plane wave acoustic modes, the first six higher order evanescent acoustic modes in both directions
and the hydrodynamic modes are shown for different Strouhal numbers for h1=h2 ¼ 0:35 and 0:5. Besides the influence of
the expansion ratio on the hydrodynamic modes, discussed above, also the acoustic modes are strongly affected by the
expansion ratio. Moving from h1=h2 ¼ 0:5 to 0:35 the imaginary part of the wavenumber of the evanescent acoustic modes
decreases, which means they are less damped. Also for some evanescent acoustic modes the real part of the wavenumber
(related to the phase velocity) becomes significant. A clear maximum in the real part of the wavenumber of the first
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evanescent acoustic mode is seen around a Strouhal number of 1. Here, the wavenumbers of the first evanescent acoustic
mode and the hydrodynamic mode are also closest.
4.2. Non-uniform flow

Similarly, the jump seen in the reflection and transmission coefficients for non-uniform flow, cf. Figs. 3–6, is connected
to the behaviour of the modes’ wavenumbers as a function of the area expansion ratio. For the flow profile, given by
Eq. (14), with fint ¼ 0 (no velocity jump in the shear layer) and m ¼ 10, the wavenumbers of the modes in downstream duct
2 for several Strouhal numbers oh1=U0 are shown in Fig. 12 for expansion ratios h1=h2 ¼ 0:35 and 0:5. For Strouhal number
close to 1 the wavenumbers of the first higher order evanescent acoustic modes and the hydrodynamic instability modes
are very close for the h1=h2 ¼ 0:35 case compared to the h1=h2 ¼ 0:5 case. At first sight the traces of the wavenumbers as a
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function of Strouhal number for these modes seem to be well distinguishable for h1=h2 ¼ 0:35. However, for low Strouhal
number the wavenumber of the hydrodynamic instability mode is expected to tend to zero, while for higher Strouhal
number at least the real part of the wavenumber is expected to be large compared to the wavenumber of the first higher
order evanescent acoustic mode. This would be in contradiction with the two distinguishable traces of the wavenumbers of
these modes. Supposedly a jump or exchange occurs between the first higher order evanescent acoustic mode and the
hydrodynamic unstable mode at a certain Strouhal number, resulting in the jump in scattering coefficients.
4.3. Absolute instability

Since the solution above exhibits a jump it is not analytic, and consequently the causality criteria discussed in Section
2.1 cannot be used. In order to make the solution analytic, and thus causal, a branch-cut in the complex o- plane would
have be to introduced [15]. This branch cut yields an absolute instability. For a similar flow duct model with slip this
absolute instability has been studied in more detail by Nilsson and Brander [27]. For uniform flow the solution does not
exhibit a jump. However, as discussed by Boij and Nilsson [9,10], and confirmed by the results above, also here interaction
between the first higher order acoustic mode and the hydrodynamic mode occurs, giving the observed hump in scattering
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coefficients. Nilsson [28] showed that in this case a generalization of the Jones–Morgan theory [17] is needed to establish
causality.

Causality analysis according to Section 2.1 indeed shows an apparent jump between the first higher order evanescent
acoustic mode and the hydrodynamic unstable mode at a certain Strouhal number. According to the Briggs–Bers formalism
[14,15] the jump occurs somewhere between Strouhal number oh1=U0 ¼ 1:047 and 1:048, whereas the Cright-
on–Leppington [16,17] formalism indicates the jump between Strouhal number oh1=U0 ¼ 1:048 and 1:049, see Figs. 13
and 14 respectively. The traces entering these pictures from the right originate in the lower complex plane, while the traces
entering from the left originate in the upper complex plane. This leads to the given classification of the modes. The
discrepancy between the two formalisms is an outcome of the different ’mapping’ between complex and real frequencies.

The pressure disturbance PðyÞ of the two modes is shown in Fig. 15 for Strouhal number 1:047. For Strouhal numbers
1:048 and 1:049, where the jump from hydrodynamic unstable to acoustic evanescent and vice versa has occurred
(depending on causality criterium formalism), the modes stay virtually the same. Clearly, the two modes are very similar,
and a distinction on the basis of their shape could not readily be made.

The apparent jump between acoustic evanescent and hydrodynamic unstable mode coincides with the jump in
reflection and transmission coefficients, which occurs at the same Strouhal number, already seen in Figs. 3–6. The result for
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the downstream reflection coefficient Rþ for expansion ratio h1=h2 ¼ 0:35 is again shown in Fig. 16 together with the result
for h1=h2 ¼ 0:5. The Crighton–Leppington causality analysis is utilized, giving a jump in both magnitude and phase of the
reflection coefficient between Strouhal number oh1=U0 ¼ 1:048 and 1:049. For expansion ratio h1=h2 ¼ 0:5 no apparent
jump occurs between the first acoustic evanescent and the hydrodynamic unstable mode, and consequently no jump in
reflection coefficient is observed, although a hump can be seen in the phase of the reflection coefficient around Strouhal
number 1. This was also seen for an infinitely thin shear layer at the same expansion ratio, cf. Fig. 10.

4.4. 2D cylindrical geometry

The current multimodal method for 2D rectangular geometry can easily be extended to 2D cylindrical geometry, see
Ref. [1]. Calculations are carried out for an area expansion in a 2D cylindrical duct carrying uniform mean flow, with
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Helmholtz number k0r1 ¼ 0:1. The reflection and transmission coefficients for the plane acoustic waves for different ratios
of duct radii, r1 upstream and r2 downstream of the expansion, are shown in Fig. 17. As for rectangular geometry with ratio
of duct heights h1=h2 less than 0:5, cf. Fig. 10, a hump in the magnitude of downstream reflection coefficient Rþ and
upstream transmission coefficient T� is seen around Mach number M ¼ 0:05 for ratio of radii r1=r2 less than 0:5. This
feature, which is connected to the behaviour of the modes in the preceding thus depends in the same manner on the ratio
of duct heights for rectangular geometry, respectively, duct radii for cylindrical geometry. Consequently, the scaling of the
Helmholtz number as proposed by Boij and Nilsson [9] (see also Ref. [1]) in order to compare 2D rectangular and 2D
cylindrical geometry with the same area expansion ratio, h1=h2 ¼ r2

1=r2
2, is not valid for all Strouhal numbers, or Mach

numbers, in cases where h1=h2o0:5, while r1=r240:5.
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5. Conclusion

Scattering of sound at a sudden area expansion in a duct carrying mean (sheared) flow has been modelled with a
multimodal method. Here, the pressure and velocity disturbance field are solved as expansions of eigenmodes both
upstream and downstream of the area discontinuity. Mode matching at the area discontinuity, i.e. demanding continuity of
the proper acoustic variables, subsequently gives the scattering matrix, which relates all modes. Configurations with
uniform mean flow and non-uniform mean flow, for which the method was extensively discussed in our earlier paper [1],
can be considered. Next to this a configuration with a non-uniform mean flow profile having a slip velocity at the upstream
duct wall, and hence a velocity discontinuity at the edge of the jet in the downstream duct is introduced. As with the
uniform mean flow configuration, this configuration allows the application of an acoustic Kutta condition, accounting for
the effect of viscosity on the acoustic field near the duct expansion edge. For the normal non-uniform flow configuration,
with no slip condition at the wall, no such acoustic Kutta condition can be applied.

It is found that the plane wave scattering coefficients smoothly change when the flow profile is gradually changed from
uniform to non-uniform through a non-uniform profile with slip. The non-uniform flow case, where no Kutta condition is
applied, is thus the limiting case of non-uniform flow with slip velocity, where a Kutta condition is applied, for slip velocity
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going to zero. The uniform flow case, where neutral hydrodynamic modes vanish, is the maximum slip velocity limit. For
high Strouhal numbers no difference is seen in the results for the scattering coefficients obtained for different flow profiles.
Also, at low Strouhal numbers the magnitudes of the scattering coefficients are the same for different profiles.

Around a ‘critical’ Strouhal (or Mach) number, specific behaviour of the scattering coefficients is observed when the
ratio of the duct heights h1=h2 (in 2D rectangular geometry) or radii r1=r2 (in 2D cylindrical geometry) upstream and
downstream of the expansion is less than 0.5. The mentioned effect is found to be connected to an interaction between the
first evanescent acoustic mode and the hydrodynamic instability mode.

In case of non-uniform flow, for sufficient low area expansion ratio an apparent exchange or jump between the first
evanescent acoustic mode and the hydrodynamic unstable mode occurs at the ‘critical’ Strouhal number. This in fact
implies the occurrence of an absolute instability.
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For the incompressible solution, when only hydrodynamic modes are present, the above-mentioned behaviour is also
observed. Due to the (same) dependance of this phenomenon on ratio of duct heights or radii, the Helmholtz number
scaling proposed by Boij and Nilsson [9], in order to compare scattering for the same area expansion ratios h1=h2 in 2D
rectangular, and r2

1=r2
2 in 2D cylindrical geometry, is therefore not accurate for all Strouhal or Mach numbers.
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